Rapporter

Aakervik, Anne-Lise, Svarva, Brynjar F, Kvellheim, Ann Kristin (2024) FME ZEN Årsrapport 2023
ZEN Rapport nr. 57,

A. M. Hamdan, Hasan; De Boer, Luitzen; Hamdy, Mohamed (2022) Green public procurement and energy performance contracting
ZEN Report 29,

Collins, Dave, Aakervik, Anne-Lise, Kvellheim, Ann Kristin (2023) Innovasjonsrapport 2023
ZEN Rapport 56,

Marianne Kjendseth Wiik, Freja Rasmussen, Shabnam Homaei, Kristin Fjellheim (2023) Kriterer for sirkulære bygg. Kartlegging av bransjestandard
ZEN Report 53rev.,
NTNU/SINTEF,

Jonas Winsvold, Anders Reinertsen Liaøy, Christian Steneng, Håvard Bergsdal, Arnkell Petersen (2023) Klimagassbelastning for VVS-installasjoner
ZEN Report 52,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Benjamín Manrique Delgado, Solveig Meland, Hampus Karlsson, Lillian Sve Rokseth, Shabnam Homaei (2023) YDALIR Testing av alle ZEN nøkkelindikatorer i en ZEN-pilot
ZEN Report 51,
NTNU/SINTEF,

ZEN Report 47,
NTNU/SINTEF,

Nina Holck Sandberg, Tor Helge Dokka, Anne G. Lien, Igor Sartori, Kristian Stenerud Skeie, Benjamín Manrique Delgado, Niels Lassen (2023) Metode for klimagassberegninger av bygg – ZEN-case for test og sammenligning av NS 3720 og FutureBuilt Zero
ZEN Report 49,
NTNU/SINTEF,

Nina Holck Sandberg, Tor Helge Dokka, Anne G. Lien, Igor Sartori, Kristian Stenerud Skeie, Benjamín Manrique Delgado, Niels Lassen (2023) Energisparepotensialet i bygg fram mot 2030 og 2050 – Hva koster det å halvere energibruken I bygningsmassen? SINTEF Bokhandel
ZEN Report 50,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Kristin Fjellheim, Camille Vandervaeren, Synne Krekling Lien, Solveig Meland, Tobias Nordstrøm, Caroline Cheng, Helge Brattebø og Thomas Kringlebotn Thiis, SINTEF Community, Norwegian University of Science and Technology (NTNU) (2022) Nullutslippsområder i smarte byer
ZEN Report 46,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Shabnam Homaei, Synne Krekling Lien, Kristin Fjellheim, Camille Vandervaeren, Selamawit Mamo Fufa, Daniela Baer, Igor Sartori, Tobias Nordstrøm, Solveig Meland, Caroline Cheng, Judith Thomsen, SINTEF Community, Norwegian University of Science and Technology (NTNU) (2022) ZEN-Definisjon – Veileder for ZEN-Pilotområder
ZEN Report 44,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Kristin Fjellheim, Camille Vandervaeren, Synne Krekling Lien, Solveig Meland, Tobias Nordström, Daniela Baer, Caroline Cheng, Shannon Truloff, Helge Brattebø, Arild Gustavsen (2022) Nullutslippsnabolag i smarte byer
ZEN Report 38,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Kristin Fjellheim, Camille Vandervaeren, Synne Krekling Lien, Solveig Meland, Tobias Nordström, Daniela Baer, Caroline Cheng, Hanna Knuutila (red.), Shannon Truloff, Helge Brattebø, Arild Gustavsen (2022) Zero Emission Neighbourhoods in Smart Cities. Definition, Key Performance Indicators and Assessment Criteria: Version 3.0
ZEN Report 45,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Synne Krekling Lien, Kristin Fjellheim, Camille Vandervaeren, Selamawit Mamo Fufa, Daniela Baer, Igor Sartori, Tobias Nordström, Solveig Meland, Caroline Cheng, Judith Thomsen (2022) THE ZEN DEFINITION – A GUIDELINE FOR THE ZEN PILOT AREAS. Version 2.0
ZEN Report 40,
NTNU/SINTEF,

Kauko, Hanne; Rotan, Magnus; Claussen, Ingrid Camilla; Kvellheim, Ann Kristin (2022) Overskuddsvarme som varmekilde. Barrierer og drivere for økt bruk av overskuddsvarme til bygningsoppvarming
ZEN Report 41,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Kristin Fjellheim, Camille Vandervaeren, Karin Anton, Alexander Borg (2022) Ocean Space Centre: Klimagassutslipp fra teknisk utstyr og tekniske installasjoner
ZEN Report 42,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Patricia Schneider-Marin, Irene González Fernández, Jonas Winsvold, Lukasz Rosochacki, Stein Nørstebøen, Anna-Thekla Tonjer, Heidi Erikstad (2022) TEORI MØTER PRAKSIS – ER MILJØRIKTIGE BYGG ØKONOMISK GJENNOMFØRBARE? Scenarioanalyse av konstruksjonsvalg på Ydalir
ZEN Report 43,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Shabnam Homaei, Synne Krekling Lien, Kristin Fjellheim, Camille Vandervaeren, Selamawit-Mamo Fufa, Daniela Baer, Igor Sartori, Tobias Nordström, Solveig Meland, Caroline Cheng, Judith Thomsen (2022) ZEN-Definisjonen – En veileder for ZEN- Pilotområder. Versjon 3.0. Norsk
ZEN Report 44N,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Kristin Fjellheim, Camille Vandervaeren, Synne Krekling Lien, Solveig Meland, Tobias Nordström, Caroline Cheng, Helge Brattebø, Thomas Thiis (2022) Nullutslippsområde i smarte byer. Definisjon, vurderingskriterier og nøkkelindikatorer Versjon 4.0. Norsk
ZEN Report 46,
NTNU/SINTEF,

ZEN Report 35,
NTNU/SINTEF,

Ann Kristin Kvellheim, Sunniva Moum Danielsen, Anne Grete Hestnes, Arild Gustavsen (2021) ZEN Annual Report 2020
ZEN Report 31,
NTNU/SINTEF,

Stian Backe, Dimitri Pinel, Magnus Askeland, Karen Byskov Lindberg, Magnus Korpås, Asgeir Tomasgard (2021) Zero Emission Neighbourhoods in the European Energy System
ZEN Report 30,
NTNU/SINTEF,

Marianne Kjendseth Wiik, Selamawit Mamo Fufa, Kristin Fjellheim, Synne Krekling Lien, John Krogstie, Dirk Ahlers, Annemie Wyckmans, Patrick Driscoll, Helge Brattebø, Arild Gustavsen (2021) Zero Emission Neighbourhoods in Smart Cities. Definition, Key Performance Indicators and Assessment Criteria: Version 2.0. Bilingual version
ZEN Report 32,
NTNU/SINTEF,

Amir Sinaeepourfard, John Krogstie, Sobah Abbas Petersen (2021) ZEN Data management and monitoring. Requirements and architechture
ZEN Report 34,
NTNU/SINTEF,

Synne Krekling Lien, Kamilla Heimar Andersen, Hanne Liland Bottolfsen, Nicola Lolli, Igor Sartori, Åse Lekang Sørensen, John Clauss (2021) Energy and Power: essential key performance indicators for ZERO EMISSON neighbourhoods. An analysis of 6 pilot areas
ZEN Report 36,
NTNU/SINTEF,

ZEN report 33,
NTNU/SINTEF,

Kvellheim, Ann Kristin; Moum Danielsen, Sunniva; Nuijten, Anne (2020) Innovasjonsrapport 2020
ZEN Report 28,
NTNU/SINTEF,

Krekling Lien, Synne; Ahang, Mohammedreza; Byskov Lindberg, Karen; Fjellheim, Øystein (2020) ZEN case study: End user flexibility potential in the service sector
ZEN report 27,
NTNU/SINTEF,

ZEN Report 29,
NTNU/SINTEF,

Rønneseth, Øystein; Haase, Matthias; Georges, Laurent; Thunshelle, Kari; Holøs, Sverre Bjørn; Fjellheim, Øystein; Mysen, Mads; Thomsen, Judith (2020) Building services solutions suitable for low emission urban areas
ZEN Report 26,
NTNU/SINTEF,

Baer, Daniela; Nielsen, Brita Fladvad; Gohari, Savis; Bø, Lars Arne; Junker, Eivind (2020) Nytt blikk på medvirkningsprosesser i bærekraftig byutvikling
ZEN Report 25,
NTNU/SINTEF,

Wiik, M. Kjendseth; Selvig, E.; Fuglseth, M.; Resch, E.; Lausselet, C.; Andresen, I.; Brattebø, H.; Hahn, U. (2020) Klimagasskrav til materialbruk i bygninger
ZEN Report 24,
NTNU/SINTEF,

ZEN Report 23,
NTNU/SINTEF,

ZEN Report 22,
NTNU/SINTEF,

Bremvåg, A., Hestnes, A. G., & Gustavsen, A. (eds.) (2020) ZEN Annual Report 2019
ZEN Report 21,
NTNU/SINTEF,

ZEN Report 20,
NTNU/SINTEF,

Calculation of Key Performance Indicators of Energy and Power in Ydalir

Ydalir is the name of a development area located northeast of the centre of Elverum. The area is one of
the pilot areas in FME ZEN with ambitions of becoming a Zero Emission Neighbourhood (ZEN). At
the end of the construction period the area will have a new school, a kindergarten, and about 700
residential units. There are high ambitions for the development of Ydalir. For Ydalir to fulfil the ZEN
definition, it must be energy efficient, and the emissions from the area must be reduced. The emission
reductions in Ydalir will be achieved through building according to the Norwegian passive house
standard (NS 3700/NS3701), by using district heating, and by installing photovoltaic (PV) solar panels.

The development of the definition of a Zero Emission Neighbourhood (ZEN) and the development of
assessment criteria and key performance indicators is an ongoing process that will last throughout the
program period of FME ZEN. This work will enable an assessment of the performance of the ZEN pilot
areas. Based on the draft for the ZEN definition, the assessment criteria and KPIs (per 2019) can be
divided into the following categories: GHG Emissions, Energy, Power, Mobility, Spatial qualities,
economy and innovation.

Constructing Ydalir as a ZEN will have positive impacts on energy consumption, the peak load,
and the utilization of the local electricity grid.

The purpose of this report is to test the indicators on energy and power on a ZEN-pilot in the planning
phase. The suggested energy KPIs and power KPIs have been tested for Ydalir for the year 2035. It is
assumed that the area will be fully operational by this time. Two scenarios have been created for Ydalir,
2035: the first scenario represent the current expectations for the pilot area and is called the «ZEN
Scenario». The second scenario represent the reference project, or the «Business as usual» (BAU) case
for the development of Ydalir. This is called the «Baseline Scenario». The KPIs for Energy and Power
have been calculated for Ydalir for both scenarios.

This analysis shows that the KPI net energy demand can be reduced by 27 %, the total import of energy
can be reduced by 30%, and the combined peak load for electricity and heating can be reduced by 24%
in the ZEN-scenario compared to the Baseline Scenario.

Annual energy use and emissions from the use phase can be significantly reduced if the development
turns out as expected, if all developers follow the master plan, and if the use of transport by car is reduced
as expected. The testing of the KPIs used in ZEN within the categories Energy and Power shows that
there is a need for further work on system boundaries, the reference scenario, and finding standard
methodologies.

Involved ZEN-partners in this study have been SINTEF, Elverum Vekst, and Elverum municipality.


Matthias Haase, Nicola Lolli and Kari Thunshelle (2020) Renovation concepts for residential buildings
ZEN Report 19,
NTNU/SINTEF,

This study looks at the challenges and opportunities in the deep energy renovation market with prefab elements. An analysis of 39 European projects was conducted, and the results where structured in three topics.


Woods, R., Berker, T., Baer, D. & Bø, L. A. (2019) ZEN living labs definition, ideas, and examples
ZEN Report 18,
NTNU/SINTEF,

Popular summary in English:

(Scroll nedover for norsk sammendrag)

Living labs are user centred initiatives where knowledge production involves individuals or user groups
affected by sustainable transitions. The FME Research Centre on Zero Emission Neighbourhoods in
Smart Cities (ZEN) has chosen living labs to secure user engagement and as a framework for the
organisation of user involvement in pilot projects. The report presents three main elements, firstly the
ZEN understanding of what a living lab is and how it may be applied within a ZEN neighbourhood.
Secondly, it offers examples of living labs that have inspired the ZEN use of the living lab concept, and
thirdly, it provides insight into how user participation has already taken place within ZEN pilot
neighbourhoods.

Historical and current applications of living labs are presented in the report, underlining the potential of
using the ZEN living lab concept. A ZEN living lab is an open, inclusive space that supports user
engagement with ZEN pilot projects, bridging the gap between the social and technical context. A ZEN
living lab should function as a creative arena for knowledge exchange, between people, places, and
technology. An arena that should ideally highlight learning processes. The ZEN living lab concept
includes four main elements:

1. Representatives from the different user groups affected by the sustainable neighbourhood
transition proposed by ZEN.
2. A clearly defined geographical place.
3. A set of iterative activities.
4. An experimental format based on the challenges and needs of the neighbourhood.

The definition of zero emission neighbourhoods applied by the ZEN Centre implies technical solutions
to the reduction of energy use and CO2 emissions. This definition implies a target-based application of
the living lab methodology: the testing of technical solutions as a means to achieve innovations within
the construction industry or the energy sector. The ZEN living lab concept proposes as less target based
understanding of the pilot projects, because any application of the living lab concept should not lose
sight of the primary aim, which is engaging with the user groups who will be affected by the changes
implied by the introduction of zero emission technology. This should take place in an open and inclusive
process where the results may be learned from but not necessarily measured.

 

Norsk sammendrag:

Living labs er brukersentrerte tiltak som har mål om å involvere ulike individer eller brukergrupper i
tekniske eller bærekraftig endringer i samfunnet. The FME Research Centre on Zero Emission
Neighbourhoods in Smart Cities (ZEN) har valgt living labs som et format til å organisere og sikre
brukerengasjement i pilotprosjekter. Hovedformålene med bruk av living labs i ZEN-pilotprosjekter er
å øke forståelsen blant ulike brukergrupper for ZENs målsettinger og til å støtte arbeidet med å realisere
bærekraftige endringer. Rapporten presenterer ZEN-definisjonen av hva en living lab er, og hvordan
den kan brukes i et ZEN-pilotområde. Rapporten gir også innsikt i brukermedvirkningsprosesser som
allerede har funnet sted innenfor ZEN-pilotområder og presenterer eksempler på living labs som har
inspirert ZEN-bruk av laboratoriekonseptet.

Rapporten understreker potensialet for å bruke ZEN living lab-konseptet. En ZEN living lab er et åpent
inkluderende format som støtter brukerengasjement i ZEN-pilotprosjekter. Hensikten med å benytte
living lab-konseptet er å bygge bro mellom den sosiale og tekniske konteksten. En ZEN living lab skal
fungere som en kreativ arena for kunnskapsutveksling mellom mennesker, steder og teknologi. En arena
som ideelt sett bør gir rom for læringsprosesser. En ZEN living lab skal inneholde fire hovedelementer:

1. Representanter fra de ulike brukergruppene som er berørt av bærekraftige endringer foreslått av ZEN.
2. Et klart definert geografisk sted.
4. Et sett av iterative aktiviteter.
3. Et eksperimentelt format basert på utfordringene og behovene i pilotprosjektet.

ZEN-definisjonen av null-utslippsområder fokuserer på tekniske løsninger for reduksjon av
energiforbruk og CO2-utslipp. Det er derfor en tendens til å benytte en målbasert living lab metodikk,
som testing av tekniske løsninger, som et middel for å oppnå innovasjoner innen byggebransjen eller
energisektoren. Enhver anvendelse av ZEN living lab konseptet bør imidlertid ikke miste fokuset på det
primære målet, som er å engasjere brukergruppene som vil bli påvirket av endringene som følger med
innføringen av nullutslippsteknologi. Dette bør være i form av en åpen og inkluderende prosess.


Backe, S., Sørensen, Å. L., Pinel, D., Clauß, J. Lausselet, C., & Woods, R. (2019) Consequences of local energy supply in Norway – A case study on the ZEN pilot project Campus Evenstad
ZEN Report 17,
NTNU/SINTEF,

Popular summary in English:

(Scroll nedover for norsk sammendrag)

 

Consequences and opportunities of local energy supply at Campus Evenstad

This report evaluates Campus Evenstad towards becoming a ZEN. The goal is to present which
measures are most relevant to realize ZEN goals related to energy and develop an understanding of
potential, consequences, value, and status related to operations and investments in the energy system
at Campus Evenstad. We evaluate consequences of achieving different degrees of on-site supply of
renewable energy. Four aspects are evaluated for the energy system: (1) Value creation and regulatory
framework, (2) future investments, (3) operational control and optimization, and (4) emission
reductions.

Local energy supply is most valuable when consumed in the neighborhood

Local power supply generates economic value mainly through saved costs of reduced grid import (i.e.
delivered electricity to the neighbourhood). Saved costs are achieved due to (1) less delivered
electricity, (2) reduced grid tariff, and (3) reduced taxes and levies as the billing is based on net
metering of delivered electricity.

We have investigated future investments in the energy system at Campus Evenstad by using a linear
programming model. The results show that investments in more PV is the most cost-efficient way of
achieving annual compensation of emissions. In addition, operational control through planned
charging of battery and electric vehicles or pre-heating space and water to reduce peak loads and
minimize operational costs should be prioritized.

Campus Evenstad should aim at self-consuming local energy resources to minimize emissions. This is
because the local energy resources are based on renewable resources that replaces energy supply based
on fossil fuels other places in Europe.

This report can be used to support decisions for Statsbygg at Campus Evenstad on its way towards
ZEN. More general, consequences of energy choices in a ZEN is investigated and will be relevant for
other ZEN partners. The report incorporates several work packages in FME ZEN and connects
economic, operational, and technical aspects in the development of a Zero Emission Neighbourhood.

 

Norsk sammendrag:

Konsekvenser og muligheter knyttet til lokal energiforsyning på Campus Evenstad

Denne rapporten vurderer Campus Evenstad på veien mot ZEN. Hensikten med rapporten er å vurdere
hvilke tiltak som er relevante fremover for å realisere energimål knyttet til ZEN, og den skal gi en
forståelse for potensial, konsekvens, verdi og status knyttet til ulike tiltak relatert til drift og
investeringer i energisystemet på Campus Evenstad. Vi trekker blant annet frem konsekvenser av ulik
grad av selvforsynt fornybar energi. Fire faktorer vurderes for energisystemet: (1) Verdiskaping og
regulatorisk rammeverk, (2) fremtidige investeringer, (3) driftsoptimalisering og styringssystemer og
(4) utslippsreduksjoner.

Lokal energiproduksjon er mest verdifull om den brukes innenfor nabolaget

Lokal elektrisitetsforsyning skaper økonomisk verdi hovedsakelig gjennom sparte kostnader som følge
av mindre behov for strømimport (i.e. levert elektrisitet til nabolaget). Det skapes verdi både gjennom
(1) redusert levert strøm, (2) redusert nettleie og (3) øvrige reduserte elavgifter siden alle disse leddene
av strømregningen baseres på netto strømforbruk.

Vi har undersøkt potensielle fremtidige investeringer i energisystemet for Campus Evenstad ved hjelp
av en optimeringsmodell. Våre analyser antyder at den mest kostnadseffektive måten å oppnå årlig
kompensering av utslipp på er gjennom investeringer i flere solceller. I tillegg bør driftsoptimalisering
gjennom planlagt ladning av batteri og elbiler eller foroppvarming av rom og vann for å redusere
topplaster og minimere driftskostnader prioriteres fremover.

Campus Evenstad bør i størst mulig grad benytte lokale enheter ved energiforsyning for å minimere
utslipp. Denne påstanden kan forsvares ved at de lokale enhetene kun er driftet på fornybare
energikilder som erstatter energi produsert med fossile energikilder andre steder i Europa.
Rapporten kan brukes til å støtte videre beslutninger for Statsbygg på Campus Evenstad på veien mot
ZEN. Den gir også innsikt i konsekvenser av energivalg generelt i ZEN som er relevant for øvrige
ZEN-partnere. Arbeidet spenner på tvers av ulike fagfelt innenfor FME ZEN og binder sammen
kunnskap knyttet til økonomiske, driftsmessige og tekniske aspekter ved utviklingen av et
nullutslippsområde.


Wolfgang, O. (ed), Askeland, M., Backe, S., Fagerstrøm, J., Crespo del Granado, P., Hofmann, M., Jaehnert, S., Kvellheim, A.K., Maranon-Ledesma, H., Midthun, K., Seljom, P., Skjølsvold, T., Sæle, H. & Throndsen, W. (2019) Prosumer’s role in the future energy system – A position paper prepared by FME CenSES
CenSES Position Paper,

ZEN Report 16,
NTNU/SINTEF,

Popular summary in English:

(Scroll nedover for norsk sammendrag)

This report presents results from an ethnographic process carried out by the Research Centre for Zero Emission Neighbourhoods in Smart Cities (ZEN Centre) in collaboration with Steinkjer Municipality in 2017 and 2018. It follows the process of developing a pilot project at Lø in Steinkjer, where a zero emission neighbourhood was planned and which included the upgrading of the old offices of the Norwegian Broadcasting Company in Steinkjer to a zero emission kindergarten. The report describes and analyses the decision-making process and events that took place before March 2018, when the chairmanship of Steinkjer municipality took the decision to demolish the NRK building and build a new kindergarten at Lø. The decision which stopped plans to develop a ZEN pilot project at Lø was based on the wishes of representatives from two kindergartens from Lø, who were to be co-located in the planned zero emission kindergarten.

The process is presented in the form of two main stories. (1) The story about the kindergarten at Lø, where the kindergarten representatives’ reasons for their request for a new, rather than upgraded kindergarten building, are told. (2) The story about the ZEN pilot project in Steinkjer. In this story, the reasons for the enthusiasm for the pilot project by Steinkjer municipality and ZEN researchers are explained. The report asks why two different understandings of the needs of the project were established, and proposes solutions for avoiding disaffection with projects with high energy and environmental ambitions during the early stages of the development process.

In the history of the kindergarten at Lø, there are two main reasons why the kindergarten representatives decided to stop the process of upgrading the NRK building for kindergarten purposes:

1. Prehistory: a lot happened in Lø, around the plans for co-locating the two kindergartens before ZEN became involved.

2. ZEN’s anchoring in Steinkjer municipality: The research centre was known in the Planning and Development Departments, but not beyond that. The representatives from the kindergartens believed that they received too little information about ZEN and about the pilot project development process in general.

During the planning process at Lø, the representatives from the kindergartens experienced that they were not heard, and that the needs of the building users were peripheral to the discussions taking place. When the chairmanship of Steinkjer Municipality took the decision to demolish the old NRK building and build a new kindergarten at Lø, the kindergarten representatives finally felt that user needs were in focus. The kindergarten representatives therefore regarded the story about the process at Lø to be a success story, where user needs were given priority over the needs of the building and pilot project.

For the representatives from the Planning and Development Departments and ZEN researchers the decision to demolish the NRK building was a defeat. They saw no contradiction between the ZEN concept and the kindergarten’s needs and believed that the pilot project at Lø as a fantastic opportunity. However, the municipality and ZEN did not succeed in establishing a common under-standing about what a zero emission kindergarten at Lø would mean in practice that the representatives of the kindergarten were comfortable with. A common understanding about why upgrading of the NRK building was a fantastic opportunity, was never established.

How can we avoid disaffection with ambitious energy and environmental projects?

The user’s needs should be visible from the outset, supported by a thorough and inclusive mapping process that takes place at the start of pilot project development. This will help to avoid, at an early stage, the anchoring of contradictions between everyday needs and ZEN ambitions.

Information about ZEN aims, and ambitions should be available throughout all stages of pilot development, particularly the early phase. Information about ZEN should be easy to understand for wide range of user groups and should clarify why ZEN is a «fantastic opportunity». A forum where all involved parties can listen, and exchange views should be established.

The challenges faced in Steinkjer are unique. Not all pilot projects in ZEN will require the same measures. However, the mapping of user needs and measures to ensure user involvement will always be good investments, with social value in ZEN neighbourhoods and the municipalities where the neighbourhoods are located. The ZEN Centre and its municipal stakeholders are continuously working on information production and exchange. What is lacking is greater focus on who the target groups are and information that is tailored to different user needs.

Norsk sammendrag:

Denne rapporten presenterer resultater fra en etnografisk prosess utført av Forskningssenteret for nullutslippsområder i smarte byer (FME ZEN) i samarbeid med Steinkjer kommune i 2017 og 2018. Den følger prosessen med å utvikle et pilotprosjekt for nullutslippsområder på Lø i Steinkjer, noe som blant annet innebar å gjøre om NRKs gamle kontorer i Steinkjer til en nullutslippsbarnehage.

Rapporten beskriver og analyserer beslutningsprosessen og hendelsene som skjedde før mars 2018. Da bestemte formannskapet i Steinkjer kommune å rive NRK-bygget og heller bygge en ny barnehage på Lø. Avgjørelsen som stoppet planene om å utvikle et ZEN-pilotprosjekt på Lø var basert på ønskene fra representanter fra de to barnehagene som skulle slås sammen i den planlagte nullutslippsbarne­hagen.

Prosessen presenteres i form av to hovedhistorier. (1) Historien om barnehagen på Lø, hvor begrunnelsene for hvorfor barnehagerepresentantene ønsket en ny snarere enn en oppgradert barnehage blir fortalt. (2) Historien om ZENs pilotprosjekt i Steinkjer. I denne historien forklares årsakene bak kommunens og ZEN-forskernes entusiasme for pilot­prosjektet. Rapporten reiser spørsmålet om hvorfor det oppstod to ulike forståelser av behov i prosjektet, og foreslår løsninger for å unngå misnøye i prosjekter med høye energi- og miljøambisjon­er tidlig i utviklingsprosessen.

I historien om barnehagen på Lø kommer det frem to hovedgrunner til at barnehagerepresentantene bestemte seg for å stoppe prosessen med å oppgradere NRK-bygget til en barnehage:

1. Forhistorie: Det skjedde mye i Lø rundt planene for samlokalisering av de to barnehagene før ZEN ble involvert.

2. ZENs forankring i Steinkjer kommune: Forskningssenteret var kjent i planleggings- og utviklings­avdelingene, men ikke utover det. Representantene fra barnehagene mente de fikk for lite informasjon om ZEN og om utviklingsprosessen av pilotprosjektet generelt.

Under planleggingsprosessen av pilotprosjektet opplevde representantene fra barnehagene at de ikke ble hørt og at brukernes behov var perifere for diskusjonene som fant sted. Da formannskapet i Steinkjer kommune tok avgjørelsen om å rive NRK-bygningen og heller bygge en ny barnehage på Lø, følte barnehagerepresentantene endelig at brukerne var i fokus. Representantene betraktet derfor historien om prosessen ved Lø som en suksesshistorie, der brukernes behov ble prioritert over bygg- og pilotprosjektets behov. For representantene fra plan- og utviklingsavdelingene og ZEN-forskerne var beslutningen om å rive NRK-bygget et nederlag. De så ingen motsetning mellom ZEN-konseptet og barnehagens behov. De så pilotprosjektet på Lø som en fantastisk mulighet. Kommunen og ZEN klarte imidlertid ikke å etablere en felles forståelse for hva en nullutslippsbarnehage på Lø ville bety i praksis som barne­hagenes representanter var komfortable med. De ble altså aldri etablert en felles forståelse for hvorfor oppgradering av NRK-bygget var en fantastisk mulighet.

Hvordan kan vi unngå misnøye med ambisiøse energi- og miljøprosjekter?

Brukernes behov bør synliggjøres fra starten av, støttet opp av en grundig og inkluderende kart­leggingsprosess som gjøres i startsfasen av et pilotprosjekts utvikling. Dette vil bidra til å unngå tidlig forankring av motsetninger mellom hverdagsbehov og ZEN-ambisjoner.Informasjon om ZENs mål og ambisjoner bør være tilgjengelig gjennom alle stadier av prosjektets utvikling, særlig i den tidlige fasen. Informasjon om ZEN skal være lett å forstå for et bredt spekter av brukergrupper og bør avklare hvorfor ZEN er en «fantastisk mulighet». Et forum hvor alle involverte parter kan lytte og utveksle synspunkter bør etableres.

Utfordringene i Steinkjer er unike. Ikke alle pilotprosjekter i ZEN vil kreve de samme tiltakene. Kartlegging av brukerbehov og tiltak for å sikre brukerengasjement vil imidlertid alltid være gode investeringer, med sosial verdi i ZEN-nabolagene og kommunene hvor disse ligger. ZEN-senteret og dets kommunale interessenter arbeider kontinuerlig med informasjonsproduksjon og -utveksling. Det mangler imidlertid et større fokus på hvem målgruppene er og informasjon som er skreddersydd for ulike brukerbehov.


Woods, R., Remøe, K. S., Hestnes, A. G., & Gustavsen, A. (eds.) (2019) ZEN Annual Report 2018
ZEN Report 15,
NTNU/SINTEF,

Sandberg, N. H., Næss, J. S., Gustavsen, A., Andresen, I. & Brattebø, H. (2019) Energianalyse for bygningsmassen i Oslo – Scenarioanalyse av energibruk og klimagassutslipp 2009-2040
ZEN Report 14,
NTNU/SINTEF,

Sammendrag

Det sies ofte at det er et stort potensial for energisparing og reduksjon i klimagassutslipp fra energibruk i bygningsmassen. Som innspill til sin oppdaterte klimastrategi ønsker Oslo kommune en forskningsbasert vurdering av potensialet for energisparing og reduksjon av klimagassutslipp fra energibruk i bygningsmassen framover mot 2040.

Bygg som allerede finnes i dag, vil utgjøre en stor andel av bygningsmassen i mange tiår fremover. Det er mulig å redusere energibruken i eksisterende bygg gjennom rehabilitering og energioppgradering. Nybygg bygget i fremtiden vil være langt mer energieffektive enn gjennomsnittlig eksisterende bygningsmasse. Men om disse bygges etter dagens krav, som passivhus eller nullutslippsbygg, har betydning for det samlede framtidige energibehovet. Hvilket omfang kan vi vente oss av framtidig nybygging og rehabilitering, og hva er det samlede potensialet for energisparing og reduksjon i klimagassutslipp fra energibruk i bygningsmassen i Oslo?

Ved bruk av en modell som simulerer bygningsmassens utvikling – gulvareal i ulike bygningstyper, andeler bygget etter eller rehabilitert til ulike tekniske standarder – prøver vi å forstå hvordan Oslos bygningsmasse vil utvikles mot 2040. Trender i bruk av ulike energibærere og omfang av lokal energiproduksjon brukes videre for å estimere det samlede behovet for levert energi til bygningsmassen. Ved bruk av utslippsintensiteter estimerer vi til slutt de totale klimagassutslippene fra energibruk i bygningsmassen i Oslo.

To alternative scenarioer studeres for å vurdere hvilken utvikling som kan forventes; et referansescenario der vi antar en fortsettelse av trender og videre utvikling med gradvis forbedret energitilstand på nybygg og rehabiliterte bygg, og et scenario som ser på hvilke tilleggsbesparelser i energibruk og klimagassutslipp som vil følge av en mer ambisiøs innfasing av nullutslippsbygg, mer energieffektive rehabiliterte bygg og større omfang av lokal energiproduksjon.

Estimerte utslipp av klimagasser fra energibruk avhenger i stor grad av hvilke utslippsintensiteter man velger å bruke for elektrisitet. I denne analysen presenterer vi tre alternative beregningsmetoder der vi antar a) norsk forbruksmiks, b) europeisk forbruksmiks og c) en marginalbetraktning der reduksjoner i norsk forbruk på lang sikt fører til at fossil elektrisitetsproduksjon i Europa reduseres.

Det er et stort potensial for energisparing og reduksjoner i klimagassutslipp ved ambisiøs innfasing av lokal energiproduksjon, nullutslippsbygg og mer energieffektive rehabiliterte bygg i Oslo.

Resultatene viser at selv om det samlede gulvarealet i bygningsmassen i Oslo er ventet å øke med 35 % i perioden 2009-2040, så er levert energi til bygningsmassen i referansescenarioet stabilt i perioden 2020-2040 på grunn av energieffektivisering gjennom nybygging og rehabilitering. Valg av utslippsintensitet har stor betydning for utslippenes størrelse og utvikling sammenliknet med referanseåret 2009. Resultatene viser imidlertid at det uavhengig av beregningsmetode er et stort potensial for energieffektivisering og utslippsreduksjoner. I det ambisiøse scenarioet er både total levert energi og klimagassutslipp fra energibruk i 2040 omtrent 20 % lavere enn i referansescenarioet.


ZEN Report 13,
NTNU/SINTEF,

Abstract

(Scroll nedover for norsk sammendrag)

People play a key role in zero emission neighbourhoods. They are the ones designing and creating the neighbourhood, transforming and building it and finally using it when living and working there. People play different roles in that process – such as project owners, architects, construction workers, neighbours, and users. We summarize them under the word of stakeholders. They all have a stake in the project of ZEN even if their role and influence is different and changing under the development. Important is the way stakeholders are collaborating and how their knowledge, needs, and goals are negotiated and integrated in the project development. When asked for challenges to develop ZEN, interview partners emphasized the need for good collaboration between stakeholders. This is especially important as ZEN developments asks for more than standard neighbourhood developments: greenhouse gas emissions are an important planning and design factor, something that is new for many stakeholders, and tools and knowledge are missing for that. This memo will present tools in use for stakeholder engagement in the four ZEN pilot projects in Trondheim, Elverum, Steinkjer, and Sluppen. The mapping of tools was conducted in 2017 and 2018, and the analysis is based on qualitative interviews with involved stakeholders in the four pilot projects. The results show that the pilot projects use several tools on different spatial levels (city, neighbourhood and building level), and different tools are in use in different phases of development. The tools have different goals and involve different stakeholders, some are focusing on citizens, while others aim for engagement of professional stakeholders such as construction and energy companies. The concept of the ZEN toolbox is also introduced in this memo as the tools identified in the pilot projects are to be integrated in the further development of the toolbox. But before that, we need a better understanding of the applicability and benefit of the tools used for stakeholder engagement.

 

Norwegian Summary

Mennesker spiller en nøkkelrolle for å få til nullutslipps nabolag. De er de som planlegger og designer nabolaget, transformerer det, bygger det og til slutt bruker det. Mennesker spiller ulike roller i prosessen – som prosjekteiere, arkitekter, bygningsarbeidere, naboer og brukere. Vi kan samlet kalle dem stakeholdere. De har alle en eierandel i utviklingen av et ZEN område selv om deres rolle og innflytelse er forskjellig og endres under utviklingen av området. Det er særlig viktig hvordan stakeholderne samarbeider og hvordan deres kunnskap, behov og målsetninger blir ivaretatt og innlemmet i prosjektutviklingen. Når vi har spurt samtalepartnere fra ZEN pilotprosjektene hva som er viktig, har de understreket behovet for godt samarbeid mellom aktørene. Dette er spesielt viktig, fordi et ZEN område er noe mer enn vanlig områdeutvikling da fokus på klimagassutslipp må inn i plan og designfasen. Dette er nytt for mange av aktørene, og tilgangen til verktøy og kunnskap er fortsatt begrenset. Dette notatet vil presentere ulike verktøy og tiltak til bruk i dialog med stakeholderne i de fire FME ZEN pilotprosjekter Trondheim, Elverum, Steinkjer, og Bodø. Kartleggingen av verktøy er gjennomført i 2017 og 2018, og analysen er basert på kvalitative intervjuer med ulike aktører som er involvert i de fire pilotprosjektene. Resultatene viser at pilotprosjektene bruker forskjellige verktøy på ulike nivåer (by, nabolag, og bygningsnivå), og de bruker ulike verktøy i de aktuelle faser av utviklingen. Verktøyene har forskjellige mål og involvere ulike interessenter. Noen fokuserer på innbyggerne, mens andre retter seg mot profesjonelle aktører som for eksempel bygg og anleggsbransjen og energiselskapene. Konseptet med en ZEN verktøykasse er også innført i dette notatet, fordi de suksessfulle verktøyene som identifiseres i pilotprosjektene skal integreres på et senere tidspunkt i verktøykassen. Verktøykassen skal hjelpe andre utviklingsprosjekt på områdenivå til å ta de riktige valg i framtiden. Før vi kommer så langt trenger vi en bedre forståelse av anvendbarheten til de verktøyene som i dag finnes for å opprette en god dialog med de ulike stakeholderne.


Wiik, M. K., Fufa, S. M., Baer, D., Sartori, I. & Andresen, I (2018) The ZEN definition – a guideline for the ZEN pilot areas. Version 1.0
ZEN Report 11,
NTNU/SINTEF,

Abstract

The objective of this report is to provide a guideline for how the assessment criteria and key performance indicators (KPIs) covered under each category of the ZEN definition (GHG emissions, energy, power/load, mobility, economy and spatial qualities) may be assessed and followed up in ZEN pilot projects. The guidelines explain relevant evaluation methodologies, focusing on what types of data that could be used to access the criteria and KPIs, how these data could be collected, and how the fulfilment of the KPIs could be documented. Furthermore, the guidelines illustrate briefly the ZEN pilot projects and main challenges identified in their development. The target group of the ZEN definition guideline is the different actors involved in ZEN pilot projects and other interested parties in the field. This first version of the ZEN guideline report highlights the limitations and scope for further work, which will be addressed in future editions of the ZEN definition report.

 

Sammendrag

Hensikten med denne rapporten er å gi en veiledning til hvordan de ulike vurderingskriteriene og nøkkelindikatorene i ZEN definisjonen (klimagassutslipp, energi, effekt, mobilitet, økonomi, og stedskvaliteter) kan vurderes og følges opp i ZEN pilotprosjekter. Rapporten gir en beskrivelse av relevante evalueringsmetoder, og gir en oversikt over data som er nødvendig for å gjøre evalueringene. Videre gir rapporten en kort beskrivelse av pilotområdene i ZEN, med tilhørende hovedutfordringer. Målgruppen for veilederen er aktører som er involvert i planlegging og utvikling av ZEN pilotområder, samt andre som er interessert i dette området. Denne første versjonen av en veileder for ZEN pilotområder viser også begrensninger og utfordringer mht. til videre arbeid, som vil bli adressert i fremtidige utgaver av rapporten.

 

 


Lausselet, C., Borgnes V., Ager-Wick Ellingsen, L., Hammer Strømman, A. & Brattebø H. (2019) Life-cycle assessment methodology to assess zero emission neighboorhood concept
ZEN Report 12,
NTNU/SINTEF,

Abstract

Buildings represent a critical piece of a low-carbon future and their long lifetime necessitates urgent adoption of state-of-the-art performance standards to avoid significant lock-in risk. So far, life-cycle assessment (LCA) studies have assessed buildings (conventional and Zero Emission Building (ZEB)), mobility and energy systems mainly individually. Yet, these elements are closely linked, and to assess the nexus of housing, mobility, and energy associated with human settlements by aiming for Zero Emission Neighborhoods (ZENs) gives a unique chance to contribute to climate change mitigation. ZEBs and ZENs are likely to be critical components in a future climate change mitigation policy.

This study addresses the challenge of how to use LCA when implementing such a policy, in line also with the introduction of the more stringent Energy Performance of Buildings Directive in 2010 that requires new buildings to be built with nearly ZEB standards by the end of 2020. The specific aims of this report are fourfold. First, to develop and apply an LCA model to support the evaluation of ZEN design concepts with respect to greenhouse gas (GHG) emissions and other potential environmental impacts. Second, to clarify important contributing factors as well as revealing criticalities and sensitivities for GHG emission reductions and environmental performance of such ZEN design concepts. Third, to establish a model basis for other LCA studies on a neighbourhood scale, in terms of a high-quality modelling approach regarding consistency, transparency, and flexibility. Fourth, to apply our model on two cases; a hypothetical case of a neighbourhood consisting of single family house of passive house standard and on Zero Emission Village Bergen (ZVB).

For the first case, the neighbourhood consists of single-family houses built according to the Norwegian passive house standard. We designed four scenarios where we tested the impact of the house sizes, household size, energy used and produced in the buildings, and mobility patterns. Also, we ran our scenarios with different levels of decarbonization of the electricity mix over a time period of 60 years.

Our results show the importance of the operational phases of both building and mobility at year 1, and its decline over time induced by the decarbonization of the electricity mix. In year 60, embodied emissions are then responsible for the majority of the emissions when the electricity mix is decarbonized. The most important contributing factors have been identified as the operational phases of the Building and Mobility subsystems when the carbon intensity of the electricity mix is high, and as the embodied emissions in materials when the carbon intensity of the electricity mix becomes low. A reduction of the following factors has been identified as beneficial for the overall GHG emissions of a ZEN: (1) building floor area by house either/or by inhabitants, (2) passenger cars travel distances by household, which can be achieved by several means; e.g. commuting with public transport and/or by carpooling initiatives, (3) energy use in the buildings, which is reduced by the use of the passive house standard, and (4) carbon intensity of the electricity mix.

The second case – ZVB – consists of residential and non-residential buildings, with a total area of 91 891 m2; 695 dwellings and 1 340 inhabitants. The total emissions associated with the physical elements (buildings, mobility, open spaces, networks and on-site energy) and the life cycle stages (A1-A3, B4 and B6) resulted in a total of 117 kton CO2-eq over the lifetime. This equals 1.5 ton CO2-eq/capita/year and 21.2 kg CO2-eq/m2/year, referring to heated building floor area and as yearly average emissions over the 60 year analysis period. The emissions are distributed between the elements and life cycle stages. Buildings stand for the majority of the total emissions, accounting for about 52% of the total emissions over the lifetime. The mobility is the second most contributing element, responsible for 40% of the total emissions. The emissions from the networks and open spaces constitute only 2.3% together. A sensitivity analysis showed the emission intensity for electricity and the assumption of allocating emissions from waste incineration to the waste management system rather than to district heat to have a considerable impact on the results. If an EU28+NO electricity production mix is used instead of the Norwegian electricity production mix, total emissions over the 60 years analysis period will increase with 12.5%. This is despite the fact that also negative emissions from the on-site electricity production will be larger, due to the significant increase in emissions from electricity consumed in mobility. If the emissions from waste incineration is not allocated to the district heating production, the total emissions are decreased with 25.3%. Hence, this is a most critical assumption in the LCA model.

The most important contributing factors have been identified as the operational phases of the Building and Mobility subsystems when the carbon intensity of the electricity mix is high, and as the embodied emissions in materials when the carbon intensity of the electricity mix becomes low. A reduction of the following factors have been identified as beneficial for the overall GHG emissions of a ZEN: (1) building floor area by house or by inhabitants, (2) passenger cars travel distances by household, which can be achieved by several means; e.g. commuting with public transport and/or by carpooling initiatives, (3) energy use in the buildings, which is reduced by the use of the passive house standard, and (4) carbon intensity of the electricity mix.

Introducing passive house standards on buildings has the potential to drastically decrease the overall CO2-eq emissions of a ZEB, but also of a ZEN; up to by 191% when assuming an average European electricity mix. Yet, by using a highly decarbonized electricity mix, such as is the case in Norway, the decrease is much lower, around 12%.

Also, we found the choice of the functional unit to be decisive for the conclusion of the study. When conducting LCAs on a neighbourhood scale, we thus argue for the use of a primary functional unit “per neighbourhood”, and a second “per person”. The use of a “per m2 floor area” unit is misleading as it does not give credits for reducing the total built floor area.

All these findings demonstrate that the model is capable of long-term analyses of both homogenous and complex neighbourhoods, and provides a detailed understanding of possible future development of the different elements of the neighbourhood and their GHG emissions.

This report is a part of FME ZEN Work Package 1 Analytic framework for design and planning of zero emission neighbourhoods (ZEN). The goal for WP 1 is to develop definitions, targets and benchmarking for ZEN, based on customized indicators and quantitative and qualitative data. Additionally, an LCA methodology for energy and emissions at neighbourhood scale is developed, as well as a citizen-centred architectural and urban toolbox for design and planning of ZEN.


ZEN Report 10,
NTNU/SINTEF,

Summary

This report on the pilot projects of the Research Centre on Zero Emission Neighbourhoods in Smart Cities will give the reader an overview of eight pilot projects of the Centre, focusing on the challenges to develop or transform the pilot areas into Zero Emission Neighbourhoods.

The objective of the ZEN Centre is to develop products and solutions that will lead to the realization of sustainable neighbourhoods with zero greenhouse gas emissions. These solutions will be tested in the eight real life pilot projects in Norwegian municipalities. When searching for the best solutions, we first need to map the pilot projects and the challenges they are facing on the way to become sustainable zero emission neighbourhoods. This report will therefore serve as an introduction to the eight pilot projects to help the ZEN partners to develop an understanding for the pilot projects and their challenges, as a base for further research and cooperation.

This report will start with a short introduction of the Research Centre and present a working definition for a Zero Emission Neighbourhood. Each of the eight pilot projects are described in detail by their individual characteristics regarding location, stakeholders, goals, measures, status of project development, and challenges. Challenges were identified through qualitative interviews with stakeholders of the pilot projects. These interviews were conducted in 2017.

A systematic documentation of the process and challenges to develop ZENs will help to identify the success factors and best practices that are needed for planning and developing ZENs. This enables the involved partners to learn from the first pilot projects, and to transfer solutions to other neighbourhood developments. This report provides a foundation for further follow-up, documentation, and analysis.

 

Norwegian Summary

Denne rapporten vil gi leseren en oversikt over de åtte pilotprosjektene i ZEN Forskningssenter, med fokus på utfordringene som ligger i å utvikle og transformere pilotprosjektene til nullutslippsområder.

Målet med forskningssenteret ZEN er å utvikle produkter og løsninger som vil føre til realisering av bærekraftige nabolag med null klimagassutslipp. Disse løsningene blir testet i åtte pilotprosjekter i norske kommuner. Når vi søker etter de beste løsningene, er det viktig å ha kartlagt pilotprosjektene med tanke på de utfordringene de står overfor med tanke på å oppnå bærekraftige nabolag med null utslipp av klimagasser. Denne rapporten vil derfor fungere som en introduksjon til de åtte pilotprosjektene og skal hjelpe ZEN-partnerne til å utvikle en felles forståelse for pilotprosjektene og deres utfordringer som grunnlag for videre forskning og samarbeid.

Rapporten starter med en kort introduksjon av forskningssenteret og en arbeidsdefinisjon av hva som legges i ZEN. Hvert av de åtte pilotprosjektene er beskrevet i detalj med deres individuelle egenskaper som plassering, interessenter, mål, tiltak, status for prosjektutvikling og utfordringer. Utfordringene ble identifisert gjennom kvalitative intervjuer med de involverte aktørene i pilotprosjektene, mange av dem er ZEN partnere. Disse intervjuene ble gjennomført i 2017.

En systematisk dokumentasjon av prosessen og utfordringene med å utvikle ZENs vil bidra til å identifisere suksessfaktorer og beste praksis for å planlegge og utvikle ZEN. Dette gjør det mulig for de involverte partnerne å lære fra de første pilotprosjektene og overføre løsninger til andre byutviklingsprosjekt senere. Denne rapporten danner grunnlaget for videre oppfølging, dokumentasjon og analyse.


ZEN Report 8,
NTNU/SINTEF,

Abstract

This report is a part of Work Package 4 Energy Flexible Neighbourhoods. The goal for WP 4 is to develop knowledge, technologies and solutions for design and operation of energy flexible neighbourhoods.

4th generation district heating is evaluated as a sustainable solution for covering the heating demand in Zero Emission Neighbourhoods and reducing the strain on the electricity grid. There are, however, some technical challenges that must be solved before it is introduced. One of them is to determine how low the supply temperature could be in different building types, which again will determine the minimum district heating supply temperature. This report is evaluating the minimum supply temperature in Norwegian apartment blocks based on effects of improving the thermal envelope and reducing the temperature levels for the heating system. The analysis is based on building simulation and focuses on whether the reduced supply temperature guarantees the comfort in the building, considering the coldest room with a heating setpoint of 22 °C and a minimum acceptable indoor temperature of 19,0 °C.

The simulated buildings are based on the data available from the IEE project Tabula. Generic models representative for Norwegian apartment blocks have been developed in IDA ICE. They consist of eight age classes and three levels of energy performance: • Prior to 1956, from 1956-1970, 1971-1980, 1981-1990, 1991-2000, 2001-2010, 2011-2020 and 2020 →. • Original, intermediate renovation and standard renovation For the intermediate renovation level, it is only the windows and infiltration rates that have been changed. Tabula also includes an ambitious renovation, but this has not been modelled as the results are expected to be similar to those for the newest age class. Simulations are performed with two different dimensioning temperature levels for the radiators typical for Norwegian buildings; 80/60 and 60/40 °C. The results showed that it is possible to reduce the supply temperature to the radiators from 80 to 60 °C for buildings from 1971-80 and all newer age classes, even for the non-renovated buildings. This is based on a minimum acceptable indoor temperature of 19.0 °C (according to the Norwegian building regulations, TEK). For the older age classes, an acceptable indoor temperature is not achieved for the non-renovated buildings when reducing the supply temperature. Although it is sufficient to perform the intermediate renovation to maintain temperatures above 19 °C, it is highly recommended to perform the standard renovation for these age classes to reduce the number of hours with a significantly reduced indoor temperature compared to the setpoint temperature. In addition to reduce the heating demand and thus lead to energy savings, this will also ensure that the occupants are satisfied with their thermal environment. It is important to note that the conclusions would be different if the minimum acceptable temperature was set higher, for instance at 20 or 21 °C. The results can be used by district heating companies, building owners, contractors and consulting companies in order to evaluate the introduction of 4th generation district heating in Norwegian apartment blocks. Both the models and excel sheets with hourly results are available for partners and researchers within FME ZEN.


ZEN Report 9,
NTNU/SINTEF,

Abstract

eTransport is a linear optimization tool for evaluating energy supply alternatives for building areas. This report describes an improved, more realistic district heating (DH) module that has been developed for eTransport. The new module includes several improvements as compared to the previous module:

  • Varying mass flow that depends on the heat load, as opposed to constant mass flow. 
  • Pressure included as a variable, with certain limits for minimum pressure and minimum pressure drop at the loads. 
  • Calculation of pumping power is included in the module, and pumping power due to pressure losses in pipes and at loads is included in the objective function 
  • A more realistic calculation of heat losses included, and the heat losses are included in the heat load 
  • The module allows supply flow to both directions in a pipe; a property which is relevant when more heat sources are present in a DH grid. This feature is however yet to be tested properly.

The report presents the main equations required for mathematical description of a district heating system are presented, followed by the approach taken for linear representation of these equations, required for eTransport. The report includes a brief evaluation of the module using a simple test network, and discusses the simplifications and limitations of the present module, giving suggestions for further improvements.

Sammendrag

Fjernvarme er en viktig muliggjørende teknologi i det grønne skiftet. Fjernvarme kan nyttiggjøre energi som ellers ville gått til spille, slik som gjenvunnet varme fra avfallsforbrenning og industriprosesser; eller mindre spillvarmekilder tilgjengelig i byer, slik som datasentre og store matvarebutikker. Ved hjelp av et fjernvarmesystem kan slike kilder anvendes til oppvarming av boliger og næringsbygg. Med et godt samspill med kraftnettet bidrar fjernvarme i tettbygde strøk til å avlaste kraftnettet og tilgjengeliggjøring elektrisitet til andre formål enn til oppvarming. Bygging av et fjernvarmesystem krever store investeringer i startfasen, og dermed er det viktig å vite hvilke energikilder man bør velge til et gitt område for å minimere tilbakebetalingstiden. Det er derfor vanlig å bruke planleggingsverktøy for sammenlikning av ulike energiforsyningsalternativer til området. eTransport er et slikt verktøy, lagd av SINTEF Energi i 2006. Verktøyet skal oppgraderes og videreutvikles i FME ZEN. eTransport omfatter flere energibærere, og finner den optimale måten til å drifte energisystemet, samt en optimal ekspansjonsplan i et geografisk definert område. I mange tilfeller vil det være konkurransen mellom ulike energibærere: behovet for oppvarming kan dekkes av elektrisitet eller av et fjernvarmesystem og varme kan genereres fra kilder. eTransport beregner de årlige driftskostnadene for ulike energisystemdesign, og sender disse til en investeringsmodell som finner en optimal ekspansjonsplan.

Denne rapporten beskriver en oppgradering av fjernvarmemodulen i eTransport. I den tidligere versjonen av eTransport var modulen for beskrivelse av et fjernvarmesystem svært forenklet. Den oppgraderte modulen er mer realistisk i forhold til beregning av massestrøm, varmetap, trykktap og pumpearbeid. Modulen tillater dessuten forsyning av varme i begge retninger i et rør, noe som kan være aktuelt i et varmenett som utnytter flere, distribuerte varmekilder. eTransport et lineært optimalisverktøy, og rapporten presenterer den valgte tilnærmingen for lineær formulering av de viktigste likningene for beskrivelse av et fjernvarmesystem.


SINTEF Notat 28,

M. K. Wiik, S. M. Fufa, J. Krogstie, D. Ahlers, A. Wyckmans, P. Driscoll, H. Brattebø, A. Gustavsen (2018) Zero emission neighbourhoods in smart cities: Definition, key performance indicators and assessment criteria: version 1.0. Bilingual version.
ZEN Report 7,
NTNU/SINTEF,

This document outlines the definition, key performance indicators (KPI) and assessment criteria for the Research Centre on Zero Emission Neighbourhoods in Smart Cities (ZEN research centre). This first version of the ZEN definition includes contributions from the ZEN partners. In total, around 50 people involved in the ZEN research centre have contributed to this document.

————————————————————————

Denne rapporten beskriver definisjonen, nøkkelindikatorer og vurderingskriterier som benyttes i forskningssenteret for nullutslippsområde i smarte byer (ZEN senteret). Dette er den første utgaven og inkluderer innspill og bidrag fra ZEN partnerne. Til sammen har omkring femti eksperter fra ZEN senteret bidratt til dette dokumentet. Rapporten foreligger både på engelsk og norsk.

M. K. Wiik, S. M. Fufa, J. Krogstie, D. Ahlers, A. Wyckmans, P. Driscoll, H. Brattebø, A. Gustavsen

Kolstad, M.L., Backe, S., Wolfgang, O. & Sartori, I. (2018) Software tools for local energy system operation and expansion
ZEN Report 6,
NTNU/SINTEF,

Abstract

This report describes existing software tools for analysing operation and expansion of local energy systems and is written in WP5 in the Research Centre on Zero Emission Neighbourhoods in Smart Cities (ZEN). WP5 in FME ZEN aims to develop and apply methodologies that identify the socioeconomic optimal operation and expansion of energy systems within demarked areas. The eTransport model is planned to be further developed and used to analyse pilot cases in ZEN. This report provides a brief description of the eTransport model and other alternative models found in the literature or used by partners in FME ZEN. The models are assessed based on their suitability to address the planned research tasks in FEM ZEN WP5. The report also includes a description of models developed for global and international analysis.

We are grateful for views and suggestions provided by Henrik Madsen (professor at DTU), and for comments provided by Anne Grete Hestnes (professor NTNU)

M. L. Kolstad, S. Backe, O. Wolfgang, I. Sartori

Sørensen, Å.L., Jiang, S., Torsæter, B.N. & Völler, S. (2018) Smart EV charging systems for zero emission neighbourhoods
ZEN Report 5,
NTNU/SINTEF,

Abstract

The increased use of electric vehicles (EVs) calls for new and innovative solutions for charging infrastructure. At the same time, it is desirable to improve the energy flexibility of neighbourhoods. This paper presents state-of-the-art for smart EV charging systems, with focus on Norway.

The aim of the study is to start investigating how smart EV charging systems can improve the energy flexibility in a Zero Emission Neighbourhood (ZEN). The intention is that the study will be useful when evaluating activities and technologies for the ZEN pilot areas.

The paper presents energy demand for EV charging and typical charging profiles. Further, it describes how charging stations can interact also with the energy need in buildings and neighbourhoods, local energy production and local electric and thermal energy storage. Examples of commercial smart EV charging systems are described.

The report lists some opportunities for testing smart EV charging in the ZEN pilot areas. Piloting of new technologies and solutions can provide more knowledge about smart EV charging systems, and how they can participate in matching energy loads in buildings and infrastructure with local electricity generation and energy storage.

Åse Lekang Sørensen, Shanshan Jiang, Bendik Nybakk Torsæter, Steve Völler

ZEN Report 4,
NTNU/SINTEF,

Abstract

This report is a part of Work Package 3 Responsive and Energy Efficient buildings. The goal for WP 3 is to create cost effective, responsive, resource and energy efficient buildings by developing low carbon technologies and construction systems based on lifecycle design strategies.

As conventional HVAC systems can only make most users satisfied with their thermal environment, there has recently been a lot of research into personal climatization systems. The aim of this literature study was to investigate whether personal heating and cooling solutions could contribute to make all users satisfied with their thermal environment. Potential energy savings are considered a bonus, but was also included in the evaluation of the literature on the subject.

Almost all of the articles reviewed in this report found that the personal climatization devices significantly improved thermal sensation and thermal comfort for the users. For both heating and cooling it was found that combining personal comfort devices resulted in higher comfort improvement and higher energy saving potential. The devices also made it possible to achieve thermal comfort outside the traditional heating and cooling setpoints, thus making it possible to extend the thermal dead-band of buildings, which could lead to substantial energy savings. There are however still some aspects of personal climatization systems where there is suggested further research, and these personal climatization systems are still not commercially available.

Øystein Rønneseth

Walnum, H.T. & Fredriksen, E. (2018) Thermal energy systems in ZEN
ZEN Report 3,
NTNU/SINTEF,

This report reviews the state-of-the-art on thermal energy systems for neighbourhoods. Its main focus is on technologies related to 4th generation district heating (4GDH), biomass combined heat and power (CHP) systems, ground source heat pumps (GSHP) and seasonal heat storage.

Harald Taxt Walnum, Eyvind Fredriksen

Næss, J.S., Sandberg, N.H., Nord, N., Vestrum, M.I., Lausselet, C., Woszczek, A., Rønneseth, Ø. & Brattebø, H. (2018) Neighbourhood building stock model for long-term dynamic analyses of energy demand and GHG emissions
ZEN Report 2,
NTNU/SINTEF,

How should sustainable neighbourhoods be designed to reduce greenhouse gas emissions towards zero? What kind of information do decision makers need to make solid future plans on the neighbourhood level? A dynamic building stock model has been developed for energy- and GHG-emission scenario analyses of neighbourhoods. The model is generic and flexible and can be used to model any neighbourhood where building stock data is available.

Jan Sandstad Næss, Nina Holck Sandberg, Natasa Nord, Magnus Inderberg Vestrum, Carine Lausselet, Aleksandra Woszczek, Øystein Rønneseth, Helge Brattebø

ZEN Report 1,
NTNU/SINTEF,

This report presents a plan for the European power market studies to be carried out within the ZEN Research Centre.

Local energy solutions such as the utilization of local renewable energy resources, and increased energy efficiency, are important for being able to reduce European greenhouse gas emissions to amounts that are in line e.g. with a 2 degree global warming. In the long run, emission levels are affected by many factors including energy system operations, investment decisions, policy instruments, social acceptance for environmental policy, amongst others. Thus, it is not trivial to calculate the full impacts of e.g. 1 TWh extra renewable energy produced locally. Still, it is possible to elaborate on and reveal important mechanisms, which will increase our understanding of those. This report present a plan for European power market studies to be carried out within the FME ZEN. The overall intention with the planned studies is not to provide more accurate numerical calculations than in previous studies, but rather to show how numerical results are affected by which economic mechanisms that are included in such studies. Thus, the studies shall be a basis for creating increased mutual understanding of arguments within FME ZEN.

Ove Wolfgang

ZEB Report 41,
NTNU/SINTEF,

This report presents a set of guidelines to assist building designers in a methodological approach to the analysis of energy systems in the early design phase of zero emission buildings. The guidelines are meant to accompany the use of a ZEB supporting tool, guiding through the necessary steps to evaluate the performance and adapt the dimensioning of different systems to the case at hand.

Igor Sartori, Sjur V. Løtveit, Kristian S. Skeie

Sartori, I., Skeie, K.S., Sørnes, K. & Andresen, I. (2018) Zero Village Bergen: Energy system analysis
ZEB Report 40,
NTNU/SINTEF,

Based on discussions with the ZEB partners, three possible solutions have been investigated for the energy system of Zero Village Bergen:

  1. District Heating (DH)
  2. Biomass fired Combined Heat and Power (Bio CHP)
  3. Ground Source Heat Pump (GSHP)
Igor Sartori, Kristian S. Skeie, Kari Sørnes, Inger Andresen